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Abstract

The rendering of volumetric effects such as refraction presents great challenge
for rendering on the GPU. As the modern GPU is highly specialised towards
rasterisation, a method of rendering that only considers the surfaces of objects
being rendered, it is challenging to simulate effects that need to consider the
interior of volumes in real-time.

This paper investigates methods of real-time volume rendering in the GPU
that are capable of considering these volumetric effects, as well as the flexible
encoding of heterogeneous volumetric structures. We present a real-time GPU-
based 3D renderer capable of considering volumetric effects using an octree
structure and ray tracing.

The full project is available at http://github.com/Catchouli/VolumeRender.
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1.Introduction

1.1 Volumetric effects

Many effects in the real world are volumetric in nature, such as fluids, clouds, fire, fog,
and dust. A volumetric effect is one for which the inner volume has an influence on the
lighting of an object, rather than just its surface. These effects are highly sought after
in video games, but existing solutions often do not model them volumetrically, instead
utilising crude approximations. Despite being fast to render using existing hardware, it
is difficult to produce realistic results with these approaches.

To produce truly realistic volumetric effects, it would be ideal to model the volumes
that cause them, and then be able to render them directly. Unfortunately, this is not a
trivial problem to solve, especially in modern 3D hardware which is focused on rendering
geometry rather than volumes.

Take for example clouds. In the real world, the lighting of clouds is not caused by
the way that light hits a surface. Perhaps the most important factor that results in the
appearance of clouds is the scattering of light as sunlight hits the atmospheric particles
that make up the cloud. As light is scattered in many directions, including inside the
cloud, it becomes important to consider the inner volume of the cloud rather than the
geometry that describes its shape.

In order to understand the problems involved in rendering volumetric effects on 3D
rendering hardware, it is important to understand the mechanism by which 3D rendering
is accomplished on this hardware: rasterisation.

(a) Clouds (b) A water droplet

Figure 1.1: The lighting of clouds and water droplets is volumetric in nature
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(a) A naked flame (b) Dust

Figure 1.2: Other effects which must be considered volumetrically to be rendered physi-
cally are fire and dust

1.2 Rasterisation

Rasterisation is currently the most popular rendering algorithm for generating three-
dimensional images in video games. It is also the purpose for which modern graphics
processing hardware is heavily specialised.

The basic mechanism by which rasterisation functions is converting polygons to a
raster image, a rectangular grid of pixels with each pixel having a defined colour. Typ-
ically, triangles are utilised, as any geometric shape, whether convex or concave, can
be easily triangulated. Graphics hardware then has the simple job of processing these
triangles to produce a raster image.

1.2.1 Polygon scan conversion

A common method of accomplishing rasterisation is polygon scan conversion. By consid-
ering a single scan-line of a polygon at a time, identifying the edges, and filling in the
scan-line in between them, a raster image of the polygon can be created. As in figure 1.3,
this is trivial for a convex polygon such as a triangle, as there will only ever be two edges
intersecting a scan-line.

Repeating this technique for every scan-line covered by the triangle produces a raster
image of the polygon, as shown in figure 1.4.

1.2.2 Extension to 3D graphics

This technique is then extended to 3D graphics using a projection calculation which
maps 3D geometry to a position on the screen. During rasterisation, the pixels can also
be shaded using attributes such as the position of the point relative to any lights, and the
normal of the plane the point lies on to produce a convincing result as shown in figure
1.7.

2



Figure 1.3: A triangle being rasterised. Green pixels have already been filled, while red
pixels are the edges that have been identified for the current scanline

Figure 1.4: A polygon that has been rasterised by polygon scan conversion
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Figure 1.5: An illustration of how 3D objects are mapped to the screen using a perspective
projection calculation. A 3D sphere is being rendered to the 2D viewport

4



Figure 1.6: A demonstration of how a cube is triangulated

Figure 1.7: The result image once a cube has been rasterised

1.2.3 Triangulation

Triangulation is the process of dividing a surface into triangles so it can be easily rasterised.
Triangles are convex in nature, and so are trivial to rasterise, (see section 1.2.1 on polygon
scan conversion.) In addition, any flat geometric surface can be tessellated into triangles,
and any curved surface can be reasonably approximated for the purposes of 3D rendering.

Take, for example, a cube mesh. A cuboid is made up of 6 rectangular faces. Each
face can then be divided into two triangles.

The vertices of the cube are then transformed using a perspective projection, and the
triangles are rasterised using polygon scan conversion.

5



(a) (b)

Figure 1.8: Mapping of clouds onto a skybox, and the result in-game

1.2.4 Limitations

Despite rasterisation producing convincing and, in some applications, even realistic re-
sults, it has a number of limitations when it comes to the rendering of volumetric effects.

For the purposes of rendering 3D volumes, the major limitation of rasterisation-based
rendering is that it can only consider geometry. Therefore, it only considers the surfaces
of objects that are being rendered, and not the volumes bounded within those surfaces.
Without considering the inner volume, it becomes very difficult to render these effects
realistically, and impossible to render them physically.

Another key limitation of rasterisation is that it only considers reflection, and even
then, only an approximation of the light reflected from the current polygon. Only the
current polygon is ever considered during rasterisation, making global effects such as
reflection and refraction within the scene impossible.

Despite these key limitations, there has been some success in the mapping of volumetric
effects to rasterisation hardware.

1.2.5 Existing rasterisation-based approaches

Skyboxes

Many games render clouds by mapping a cloud texture onto a sky box or sphere, and then
rendering this in the background as shown in figure 1.8. This structure then surrounds
the player, and is typically locked in place relative to the player, such that the player can
never get closer to or farther away from it. The sky texture is then projected onto this
structure, providing the background imagery for a scene.

While this may be sufficient for some applications, for example when clouds are in
the distant background, clouds rendered in this manner can never be anything more than
2D images. Take for example a flight simulator. Using this type of software, it would
be expected that the user would be able to fly close to, or even inside clouds, but as sky
boxes can only ever be background imagery, such techniques are inappropriate for this
type of application. Even for games in which the player is not expected to be able to

6



Figure 1.9: Clouds in Microsoft Flight Simulator X

(a) (b)

Figure 1.10: Use of texture-mapped quads to simplify a tree mesh. Each quad represents
many leaves, greatly reducing the complexity when compared with other representations

reach the clouds, if the player is sufficiently close enough, the clouds should appear to
move relative to each other, due to perspective or due to the effects of weather. Using a
texture to represent the sky can not simulate this effect unless multiple layers are used,
and even then this approach is extremely limited.

Billboards

In 3D rendering, billboards are flat, texture-mapped planes that always face the camera.
This allows them to appear at different scales and move relatively to each other based on
the perspective of the camera. Billboards can be used to efficiently simulate a variety of
volumetric structures, by overlapping a number of different images and blending them as
appropriate to obtain desired appearance.

Billboards have been used effectively to simulate 3D volumetric clouds. Harris, 2002

7



Figure 1.11: A volume sampled on a 3D scalar grid. The volume is sampled at the vertices
of the grid, and the grid cells are then marched to produce a polygonal approximation of
the volume

simulates the scattering of light within clouds, rendering the result to billboards which
are then subtly used to represent the cloud volumes. As the billboards can be reused
between multiple frames, this approach allows the realistic, physically based rendering of
clouds.

This is a promising approach, and demonstrates the rendering of realistic looking
clouds up close and far away as far away clouds can be reused. Harris’s approach, however
does not simulate global effects, so still falls short of the objective of simulating true
volumetric clouds.

Marching cubes

Marching cubes, a technique published in Lorensen and Cline, 1987, is a method of gen-
erating polygonal meshes from volumes in order to render them with standard polygon
rasterisation hardware. Marching cubes extracts a polygonal approximation of an isosur-
face, a closed surface that separates the outside of a volume from the inside, defined by
an isovalue for which all voxels with greater isovalues are inside the volume and all voxels
with lower isovalues are outside.

The volume is sampled at each vertex of a regular grid, with each cell defined by
its vertices and the isovalue of each vertex, as shown in figure 1.11. By comparing the
isovalue of each vertex against the isovalue of the surface, and therefore determining which
vertices lie inside, and which outside the volume, it is possible to create a polygonal
approximation of the intersection of the isosurface with the current grid cell. Each grid
cell is then considered individually, by "marching" from one cell to the next, in order
to create a polygonal approximation of the volume. The detail level of the final mesh
depends on the resolution selected for the scalar grid which is used to sample the volume.

The major advantage of this approach is that the resulting polygon mesh maps di-
rectly to existing rasterisation hardware, and is therefore as efficient to render as any

8



polygon mesh. However, the major disadvantage for the purposes of volumetric effects is
that marching cubes only considers an isosurface, ignoring the inside of the volume and
instead focusing on the rendering of the surface, making it inappropriate for considering
volumetric effects.

Texture-based methods

Texture mapping has also been successfully used to map volume rendering onto raster-
isation hardware. Engel and Ertl, 2002 utilises 3D textures representing slices, each of
which represents a view-aligned slice through the volume. Overlapping samples are then
composited using hardware alpha blending, in order to create a 3D image of the volume,
considering the volume rather than just its surface.

The advantages of this method are that it maps onto traditional graphics hardware
very well, resulting in extremely high performance on very common consumer hardware.
Unlike approaches which only consider isosurfaces, such as marching cubes, this approach
allows us to consider the internals of the volume by means of blending, meaning that it
should be possible to model volumetric effects using this approach.

Unfortunately, this approach does not allow us to consider the effects of light that
involve reflection, refraction, or scattering, as that would require changes in the direction
of light, and this approach can only consider overlapping parts of the volume.

1.3 Ray tracing

Another approach to volume rendering, that does not attempt to map volume rendering
problems to rasterisation, is ray tracing. Ray tracing functions by following rays of light
backwards from the eye and out into the scene, as shown in figure 1.12. By casting a ray
outwards into the scene for each pixel on the screen, and shading that pixel in accordance
with the properties of the hit surface, it is possible to produce a 3D image of the scene
similar to that produced by means of rasterisation.

Once the primary ray has intersected the scene, secondary rays can be spawned to
determine the contribution of light from reflection, refraction, and also to check whether
the path to each light in the scene is occluded in order to determine the contribution
of that light. By spawning these rays, ray tracing can easily produce realistic global
reflection and refraction within the scene.

Another advantage of ray tracing over rasterisation is that it can be adapted to any
data for which an intersection test with a ray can be devised. For example, the intersection
of a ray with a volume stored within an array can be determined by stepping along the ray
from the eye and stopping only when an intersection is detected or the volume is exited.

Once the ray-tracing algorithm has been adapted to consider the volumes, it is also
possible to let it peer into volumes in order to consider the interior of the volume when

9



Figure 1.12: Primary rays being cast into the scene to determine intersection with the
sphere. A primary ray is spawned for every pixel in the viewport

Figure 1.13: Once primary intersection is determined, secondary rays can be spawned in
order to determine reflection, refraction, and shadow coverage
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Figure 1.14: Ray traced refraction through a homogeneous volume

calculating the colour of the final pixel on the screen. In this way, it is similar to the
approach used in Engel and Ertl, 2002, in that overlapping parts of the volume can be
considered.

For example, as in figure 1.14, a volume with a homogeneous index of refraction would
be possible to consider by just considering the difference in index of refraction at the
surfaces, and therefore would be possible to model using geometry alone.

On the other hand, modelling refraction through a volume with a varying index of
refraction, as in figure 4.8, this approach would quickly become infeasible for volumes
of high heterogeneity. By allowing the ray tracing algorithm to consider the volume in-
volved, rather than just the geometry, volumes high in heterogeneity can also be modelled,
allowing complex visual effects to be simulated.

In order to do this in real-time, however, it is necessary to parallelise this process
in order to render at a reasonable resolution to allow image quality as high as that of
rasterisation.

1.4 General-purpose processing on the GPU

Around the turn of the century, the traditional graphics pipeline became more flexible
with the introduction of the programmable graphics pipeline. This has turned the GPU
into a massively parallel SIMD (single instruction, multiple data) processor, capable of
performing highly parallelised computation by running the same instructions on many
pieces of data at once.

With the emergence of general purpose programming languages such as OpenCL and
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Figure 1.15: Ray traced refraction through a heterogeneous volume

CUDA, the GPU has become a general purpose processing tool capable of processing any
parallelisable algorithm extremely quickly, redefining the problem of volume rendering on
the GPU from mapping volume rendering problems to fixed rasterisation operations, to
the utilisation of the GPU’s massively parallelisable SIMD computation model.

It turns out that ray tracing maps very favourably to this model, as each ray must
do roughly the same computation, but with different input data. By processing these
rays on the GPU, for example, every pixel of the screen could be considered in parallel,
allowing high screen resolutions to be considered without greatly increasing the time of
computation.

1.5 Storage

Another challenging problem in volume rendering is representing true heterogeneous vol-
umes. Naive volume storage approaches using arrays typically store data at a fixed reso-
lution. The problem with this approach is that, in order to store any of the volume at a
high enough resolution to represent it accurately, the whole volume must be stored at that
resolution. For complex scenes, this can very quickly become prohibitively expensive.

In addition, it is also unnecessary. Large regions of the scene may be empty, homoge-
neous, or identical to other regions. With such an approach, these regions have exactly
the same memory footprint as any other identically-sized region of the volume.

Ideally, we should be able to store any volume at a high enough resolution such that
it can be represented accurately, without any unwanted visual artifacts. Numerous re-
searchers have suggested approaches that avoid this problem by using hierarchical data

12



(a) (b)

(c) (d)

Figure 1.16: The construction of a hierarchical volume representation. As demonstrated
by (d), empty nodes are not divided further

structures.

1.5.1 Hierarchical data structures

Hierarchical, or tree, data structures, are structures for representing 3D volumes that start
by encoding data at a low resolution, covering large areas of the volume, and becoming
higher resolution the deeper one traverses into the hierarchy. Once the encoded region is
a sufficiently good approximation of the original volume, the hierarchy does not need to
go any lower.

An additional advantage of this type of structure is that one does not need to encode
areas of empty space, and during traversal, large areas of empty space can be skipped at
the more coarse levels of the hierarchy. The construction of such a structure has been
demonstrated in figure 1.16.
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(a) (b)

Figure 1.17: Rendering the leaves of the tree results in an approximation of the volume.
As the number of subdivisions is increased, the approximation improves

1.6 Objectives

Our primary objective is to develop a renderer that can simulate true volumetric effects
by means of ray tracing. This renderer should be able to handle heterogeneous volumes
as well as homogeneous volumes, taking into account global effects, where the rest of the
scene can affect the rendering of any one part.

In addition, this renderer should be able to function with real-time performance on
ubiquitous consumer-level graphics hardware. To accomplish this, we intend to utilise gen-
eral purpose GPU programming and develop a highly parallelisable method of rendering
that utilises the SIMD nature of graphics hardware.

Our renderer also needs to support a compact volume format which is capable of
representing highly heterogeneous regions as well as homogeneous regions, with a small
enough memory footprint to fit in GPU memory. In order to accomplish this we intend to
take advantage of hierarchical data structures which allow us to store volumes of varying
resolution and avoid storing empty space.
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2.Literature Review

2.1 Rasterisation rendering

Modern graphical hardware is heavily specialised for the tasks involved in rasterisation.
Rasterisation refers to the conversion of mathematically defined vector geometry to a
raster image on screen.

There are two main operations involved in rendering using rasterisation: transforma-
tion, the act of converting geometry defined in 3D space to coordinates on the screen,
taking into account perspective; and rasterisation itself, the act of converting this trans-
formed vector geometry into a raster image for display. These operations, and the opera-
tions required to complete them, are the purpose for which modern graphics hardware is
specialised.

2.1.1 Transformation

In graphics, the term transformation refers to the mathematical mapping of one set of
coordinates to another. The main transformations involved in 3D rendering include trans-
lation, rotation, scaling, and projection. Translation is defined as a transformation which
offsets a point by a certain amount in each axis, whereas rotation is a transformation which
rotates a point around the origin by some angle in some axis. Scaling is a transformation
which increases the distance from 0 in each axis by a multiplier.

Projection is a transformation which describes the mapping of three-dimensional points
onto a two-dimensional plane. In order to give the rendered image perspective, we use a

(a) Translation (b) Rotation (c) Scaling

Figure 2.1: Geometric transformations
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Figure 2.2: A perspective projection transformation

perspective projection. A perspective transformation takes into account the field of view
(FOV) of the viewer, as shown in figure 2.2, in order to provide a perspective-correct
representation of the scene.

In rasterisation rendering, we aim to take vector values defining the "world space"
(position within the scene) coordinates of the geometry of the surfaces we are attempting
to render and map them to the screen such that it produces a 2D image of the 3D scene.

In order to accomplish this, we consider three main transformations: perspective pro-
jection, which is defined by a projection transformation; the model transformation, which
uses translation, rotation, and scale transformations in order to represent the object’s po-
sition in the scene; and the view transformation, which uses a translation and a rotation
transformation in order to represent the camera’s position and rotation in the scene.

We use 4x4 matrices to represent these transformations, as this allows us to repre-
sent perspective projection and translation transformations (as well as the other required
transformations.) As the matrices are square, an added advantage that they can be mul-
tiplied together to result in a combined transformation known as a model-view-projection
(MVP) matrix.

This overall transformation defines the transformation of points from world space to
a position on the viewport, in "viewport space". This normalised coordinate space, often
from -1 to 1 on both axes, where -1 and 1 are the extremities of the field of view, must
then be scaled to their final coordinates on the screen, in "screen space", based on the
dimensions of the viewport. Vertices outside of this range are outside of the field of view
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of the projection.
This scaling can be described very simply. For a viewport space defined from -1 to 1

on both axes, where -1 represents the left and bottom of the viewport, and 1 represents
the top and right of the viewport, this transformation can be done by adding 1 to both
coordinates to get them in the range 0..2, dividing both coordinates by 2 to get them in
the range 0..1, and multiplying by the dimensions of the viewport, to get the coordinates
in screen space. This can be written algebraically as:

xscreen = (1 + xviewport) ·
widthviewport

2
(2.1)

yscreen = (1 + yviewport) ·
heightviewport

2
(2.2)

In different rendering frameworks the definition of the viewport can vary, but the
principles are the same. The basic transformations required to make this conversion are
simply a 2D translation and scale.

2.1.2 Rasterisation

Once geometry has been transformed into screen space, the process of rasterising triangles
in order to display them on the screen is incredibly simple (see section 1.2.1 on polygon
scan conversion for one possible method.) However, this is not the only step which is
required to produce a 2D representation of a 3D scene. The next problem is how we
should colour each pixel in the rasterised triangle in order to make it look 3D. Once a
pixel is determined to be inside the triangle, the pixel is then shaded in order to determine
its final colour on the screen.

Shading

Shading refers the process of determining a colour for a pixel on the screen. With
rasterisation-based rendering techniques, this colour is usually determined using attributes
from the triangle. Estimations of a number of lighting effects are used in order to de-
termine this colour. There are three main contributions normally taken into account
with rasterisation-based rendering techniques: ambient reflection, diffuse reflection, and
specular reflection.

In order to calculate the way a surface is lit, a normal vector describing the normal of
the plane on which a point on the surface sits. One approach is to use the normal of the
plane on which the triangle sits, which produces results that are not smooth as shown in
figure 2.3. On the other hand, an approach called Gouraud shading (Gouraud, 1971), or
smooth shading, aims to simulate the lighting of a smooth surface by defining a normal
for each vertex, typically an average normal for all faces sharing that vertex, and then
shade each vertex of the triangle, finally interpolating the colour in between to produce
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(a) Flat shading (b) Smooth shading

Figure 2.3: The difference between flat and smooth shading

a smooth fade. This effect is demonstrated in 2.4 by defining each vertex to have one of
the primary colours and then fading in between them, creating a smooth fade.

Ambient reflection

Ambient reflection refers to a small amount of light which is scattered around the scene.
As rasterisation-based approaches often do not consider global effects, the ambient con-
tribution to a surface’s reflection intensity, Iambient, is typically modelled as a constant for
a given scene, depending on the desired effect.

Diffuse reflection

Diffuse reflection refers to the scattering of light by a matte surface. Diffuse reflection is
usually modelled using Lambert’s cosine law, which describes the way light is scattered
by a perfectly matte, or lambertian, surface.

Using Lambert’s cosine law, the intensity of reflected light due to lambertian re-
flectance, Idiffuse, can be calculated by taking the dot product of the normalised light-
direction vector ~L with the surface normal ~N , as below:

Idiffuse = ~L · ~N

This value can then be multiplied by the colour of the surface and the intensity of
the incoming light in order to determine the overall diffuse component of the surface’s
reflection.

Specular reflection

Specular reflection refers to the bright spots of light that are reflected by shiny objects.
Specular highlights are visible where the surface normal lies half way between the light
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Figure 2.4: Colour interpolated across a triangle

Figure 2.5: An example of diffuse reflection
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Figure 2.6: The shiny look of this sphere is caused by specular reflection

direction and the view direction.
Two main models are used to estimate the contribution of specular reflection to the

overall reflection of a surface: the Phong shading model (Phong, 1975), and a computa-
tionally lighter modification known as the Blinn-Phong shading model (Blinn, 1977).

These approaches improve upon Gouraud shading by interpolating the normal across
the triangle, rather than just the shaded colour, increasing the computational intensity
of shading, but allowing smooth specular highlights to be calculated.

The specular component in Blinn-Phong shading is calculated by computing a half-way
vector ~H between the view and light directions (Blinn, 1977):

~H =
~L+ ~V

|~L+ ~V |
Or, more simply:

~H = normalise(~L+ ~V )

This vector is shown in figure 2.7.
The specular contribution to the overall reflection can then be calculated as:

Ispecular = ( ~H · ~N)s

Where s is the specular power, which determines the intensity of specular highlights
produced by the surface. How varying the specular power affects the intensity of the
specular reflections produced is shown in figure 2.8.

Overall reflection

The overall reflection of these surfaces can then be calculated additively:
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Figure 2.7: The relationship between the direction of viewing, light direction, the half-
angle in between the direction of viewing and the light direction, and the normal of the
surface being viewed. ~L is the normalised light vector which points from the surface being
shaded to the light source. ~N is the normal of the surface being shaded. ~H is the direction
vector half way between the angle of viewing, ~V , and the angle of the light direction, ~L

(a) s = 16 (b) s = 32 (c) s = 64

Figure 2.8: The effect of varying specular power
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Figure 2.9: Demonstration of alpha blending - a cube is alpha blended with the sphere in
the background to give the appearance of transparency

Ioverall = Iambient + Idiffuse + Ispecular

Blending

Blending is another aspect of shading, which allows rasterised surfaces to give the appear-
ance of partial or full transparency. By adding a fourth component to colours, an alpha
component, we can define how opaque an object is, where a surface with an alpha value
of 1 is fully opaque, and a surface with an alpha value of 0 is fully transparent.

By considering the alpha component of surfaces, and applying blending to additively
combine the surface’s colour with the background colour, the background colour is allowed
to show through, as shown in figure 2.9.

2.2 Rasterisation-based volume rendering

Researchers have used many approaches to map volume rendering operations directly
to rasterisation hardware, as modern graphics hardware is extremely specialised for the
purposes of rasterisation. As this sort of hardware is ubiquitous in modern computers,
methods of rendering volumes in real-time using this hardware are highly sought-after. In
order to understand why these approaches are not suitable for achieving our objectives,
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Figure 2.10: Billboard cloud tree rendering

it is important to understand these approaches in order and appreciate their limitations.

2.2.1 Billboards

Billboards are texture-mapped planes which typically have no rotation component. In
other words, they are always facing directly at the camera. Billboards have long since
been used to render complex 3D objects in real time. By reducing complex geometry to
relatively few billboards, it is possible to create a convincing enough looking representation
of a 3D object. By utilising transparency and alpha blending capabilities of rasterisation
hardware, it is possible to allow multiple layers of billboards to show through.

A common example as used in games is for tree rendering. A technique demonstrated
by Garcia, Sbert, and Szirmay-Kalos utilises a set of billboards, referred to in the paper as
a cloud of billboards, in order to vastly simplify complicated tree models defined by hun-
dreds of thousands of polygons into a few fixed billboards, each of which can approximate
many leaves. This technique is demonstrated in figure 2.10.

Similar techniques have also been successfully developed for volume rendering. Harris,
2002 combined the simulation of multiple forward scattering within a cloud volume with
billboards used to accelerate rendering. By utilising impostors, billboards subtly intended
to replace 3D objects, this approach accelerates rendering by rendering to the billboards
and reusing the results between frames. This method allows for realistic real-time render-
ing of clouds.
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The limitation of this approach is that it does not simulate global effects, and as such,
the rest of the scene does not have an effect on the rendering of an individual cloud
volume. In fact, the cloud rendering approach utilised in this paper is very specific in
the effects which it simulates, simulating very homogeneous looking clouds that are not
affected very much by the scene or surrounding clouds. Although this may be a suitable
compromise for some games, it falls short of our objectives to simulate true volumetric
effects in real-time. Nonetheless, the impostor technique may be suitable in some cases
in order to exploit frame-to-frame coherence.

2.2.2 Texture-based approaches

Engel and Ertl, 2002 proposes an approach that utilises a 3D texture as proxy geometry,
exploiting hardware alpha blending as a means to composite overlapping samples in order
to create a 3D image of a volume.

The advantage of this approach is that it maps onto existing rasterisation hardware
very well, allowing real-time volume rendering on relatively cheap, ubiquitous graphics
hardware. The major limitation of this method, however, is that it only considers over-
lapping parts of the volume. If one wishes to calculate lighting effects which involve light
being reflected or refracted in different directions as we do, this approach is not suitable.
In addition, Engel and Ertl found the precision of rasterisation hardware limited when it
came to texture representations, which resulted in artifacts in the rendered image.

2.3 Ray tracing

A more generic approach called ray tracing, similar to the approach in Engel and Ertl,
2002, aims to simulate the path of light in reverse. Ray tracing starts by firing rays
outwards into the scene from the camera (Appel, 1968), traditionally firing one ray per
pixel and finding the first intersection of the scene with the ray.

Once an intersection is found, additional rays can be spawned in order to take account
of the effects of reflection and refraction. Unlike Engel and Ertl’s approach, this allows
the ray of light to follow a path that isn’t just straight, allowing rendering to account for
the contribution to lighting of other parts of the scene that aren’t directly overlapping a
particular pixel.

In addition to allowing light reflected from the rest of the scene to be taken into
account, rays can also peer directly into volumes in order to determine the effects of
lighting within them. This allows us to consider volumes that are not just homogeneous
in nature, as the ray can be affected within the volume by the internal structure of the
volume.
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Algorithm 1 Per-pixel rendering
1: procedure render_pixel(x, y, tree, projection)
2: out_colour ← (0, 0, 0, 0)
3: ray ← calculate_ray(x, y, projection)
4: intersection← raycast(tree, ray)
5: if intersection.hit then
6: out_colour ← shade(tree, ray, intersection)
7: end if
8: returnoutcolour
9: end procedure
10:
11: procedure shade(tree, ray, intersection)
12: out_colour ← (0, 0, 0, 0)
13: for each light do . Shade for each light
14: light_dir ← light_pos− intersection.position . Check shadow
15: shadow_ray ← (intersection.position, lightdir)
16: shadow_intersection← raycast(tree, shadow_ray)
17: if shadow_intersection.hit then
18: continue
19: end if
20: out_colour + = diffuse_reflection(intersection, light)
21: out_colour + = specular_reflection(intersection, light)
22: end for
23:
24: reflection_ray ← reflect(ray, intersection) . Reflection
25: reflection_intersection← raycast(tree, reflection_ray)
26: if reflection_intersection.hit then
27: out_colour + = shade(tree, reflection_ray, reflection_intersection)
28: end if
29:
30: refraction_ray ← refract(ray, intersection) . Refraction
31: refraction_intersection← raycast_empty(tree, refraction_ray)
32: if refraction_intersection.hit then
33: out_colour + = shade(tree, refraction_ray, refraction_intersection)
34: end if
35: end procedure
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Figure 2.11: In ray tracing, primary rays are cast through each pixel on the viewport

Figure 2.12: Additional rays can then be spawned for each intersection to calculate shadow
coverage, reflection, and refraction
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2.3.1 Direct volume rendering

Ray tracing allows the direct rendering of a volume, without having to first sample the un-
derlying volume into another format. Any volume (or structure) for which an intersection
test can be defined can be rendered by means of ray tracing.

Roth, 1982 presented an algorithm for directly rendering constructive solid geometry
(CSG), a method for representing 3D shapes which involves combining various geometric
shapes using boolean operations. This work described the calculation of eye rays for
orthographic as well as perspective projections, as well as a hierarchical data structure
for storing and rendering CSG directly. This work also described a number of primitives
as well as the relevant necessary intersection tests. Additionally, Roth demonstrated the
application of this algorithm for producing realistically shaded solids for use in computer
aided design, and also used shadow rays in order to produce ray traced shadows, and even
described a method for anti-aliasing of the resulting image.

The direct rendering of volumes simplifies computation, removing the need for us to
rely on intermediate representations of volumes, and allowing us to consider the volume
itself as all information may be relevant to the rendering of the current pixel.

Although this allows broad coverage of geometric shapes, it is difficult to represent
highly heterogeneous volumes with CSG, as it would require a very large number of
separate geometric shapes to model changes in heterogeneous attributes. In addition,
it would be impossible to render smoothly changing heterogeneous attributes without a
very large number of geometric shapes, at which point it would be more efficient to use a
grid-based sampling approach. For this reasons, it is unsuitable for our objectives.

2.3.2 Space subdivision

The next important advancement in ray casting technology was presented by A. S. Glass-
ner, 1984. By using an octree, a hierarchical volume representation, to partition space,
and storing a list of objects in each node of the tree, he greatly reduced the number
of comparisons required for each ray. This allowed the rendering of hundreds, or even
thousands of objects in a scene without greatly increasing the computation time for each
object. Despite this, an object format which is capable of storing heterogeneous volumes
is still required.

On the other hand, Wilhelms and Gelder, 2000 presented a space-efficient octree rep-
resentation that is designed for representing voxel data directly. By not storing empty
space within the tree, a technique referred to as sparse voxel octrees (SVOs), a consider-
able amount of space is saved, reducing the memory footprint of the stored voxel data.
Additionally, as the voxel data is stored directly using this kind of approach, it is possible
to represent heterogeneous volumes with this structure.

Amanatides and Woo, 1987 presented a significant optimisation to the traditional

27



ray tracing algorithm, by presenting a method of mathematically determining the next
voxel in a traversal and automatically stepping directly to its boundary. Using this new
algorithm, traversing from one voxel to its neighbour requires only two floating point
comparisons and one floating point addition. This greatly reduces computation time for
ray casts, and is the basis for a large amount of derivative work on efficient ray casting.

Arvo, 1988 extends this technique to the octree, presenting an efficient linear-time
voxel walking algorithm for octrees with a best case complexity of O(log N). Arvo’s
approach is a top-down approach which ensures that nodes are only considered once
per ray and visits the voxels in the correct order, resulting in the O(log N) best case
complexity. Arvo’s algorithm involves checking the intersection of the ray with the root
node of the octree, and recursively shortening the spans of the ray that are considered for
intersection.

2.3.3 GPU implementation

Due to the fact that ray tracing utilises one primary ray per pixel, a fact that both limits it
and works to its advantage in its basic implementation, the process is highly parallelisable.
Additionally over the last decade, a breakthrough occurred in graphics hardware, which
saw GPUs becoming massively parallel general-purpose stream processors, as opposed to
the original fixed-function format. Purcell, Buck, Mark, and Hanrahan, 2002 investigates
this trend and explains how ray tracing can be mapped to graphics hardware. Purcell
et al. demonstrate how to reformulate ray tracing as a streaming computation, making it
appropriate for GPU implementation. The process is as follows:

For each pixel of the screen:

1. Generate eye rays

2. Traverse acceleration structure

(a) Do intersection tests

3. Shade hit

(a) Generate shading rays (repeating 2-3 as necessary)

Purcell et al. were the first to demonstrate that efficient real-time ray tracing in the
GPU is possible without any changes in architecture.

2.3.4 Efficient GPU traversal

Aila and Laine, 2009 discusses the mapping of elementary ray tracing operations such as
traversal and intersection onto GPUs. This work focuses on understanding the efficiency
of GPU ray traversal rather than directly presenting an efficient ray traversal implemen-
tation, highlighting the fact that very little is understood about the performance of fast
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ray traversal algorithms. By comparing the performance of these algorithms against a
theoretical upper bound, Aila and Laine demonstrate that previous methods are off by a
factor of 1.5x - 2.5x theoretical optimal performance, and highlight previously unidentified
inefficiencies in hardware work distribution.

Their work demonstrates that reliance on persistent threads rather than hardware
work distribution mechanisms can improve the performance of the fastest GPU trace()
kernels significantly.

2.3.5 Efficient octree storage

Wilhelms and Gelder, 2000 present a space-efficient octree representation that does not
allocate memory for empty space - what has become known as a sparse voxel octree
(SVO). Wilhelms and Gelder’s structure utilises a pointer-less "linear octree" structure
which avoids storing pointers between every node.

Laine and Karras, 2010 expand on these ideas by storing pointers between blocks
of octrees and otherwise determining a particular child’s address using an index and a
parent’s 8-bit child mask. As the child’s pointer can be obtained from a lookup table using
this index and child mask, it is unnecessary to store a pointer for every voxel, making the
structure far more efficient.

As Laine and Karras demonstrate, the SVO structure can be efficiently ray traced with
an implicit level of depth (LOD) mechanism, as traversal can be terminated as soon as a
found voxel is smaller than the current pixel on the screen. At high resolutions, however,
even with the efficient SVO storage structure presented by Laine and Karras, mid-sized
scenes still take up an excessive amount of storage, with Laine and Karras’s test scenes
utilising up to 4GBs of memory, the upper bounds of memory on today’s GPUs.

However, while extremely efficient to ray cast, and fairly compact when compared to
other structures, Laine and Karras’s structure is still fairly heavy on memory usage. In
their paper, Laine and Karras address this by only encoding surfaces, an approach that
is obviously not possible if volumetric effects are desired.

To combat memory usage, they additionally implement a concept called contours, in
which surface voxels are restrained to a non-cubic shape using a pair of parallel planes,
and once this shape provides a good enough approximation of the surface, the tree does
not need to be generated any further. Laine and Karras’s implementation for this is
very efficient, and automatically takes into account multiple levels of contours in order to
produce a shape extremely close to the source data. A similar process could also be used
to prevent unnecessary depth in homogeneous regions, where the current approximation
of the volume is sufficiently good.

Additionally, more recent work by Kampe, Sintorn, and Assarsson has greatly reduced
the memory usage of SVOs by allowing identical regions of the tree to share pointers,
allowing the reuse of data between regions. This new structure is referred to as a direct
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analytic graph, or sparse voxel DAG. Kampe et al. have found that, using this technique,
the memory usage of even highly irregular scenes can be reduced by 1 to 3 orders of
magnitude. Despite this being most effective for more homogeneous scenes, the gains
shown for highly irregular scenes are also very promising.

2.3.6 Animation

Due to the nature of deformation, animation has previously not been possible with voxel
structures because it would leave gaps between voxels. Additionally, deforming a hi-
erarchical structure means that there is no longer a guarantee that all child nodes lie
inside their parent nodes. Bautembach, 2011 presented an approach to the animation
of voxel octrees by expanding the parent voxels so that they still encompass all child
voxels. Bautembach’s approach demonstrates an efficient and effective approach capable
of character animation with sparse voxel octrees, something which had previously been
considered infeasible.

2.3.7 Caching

Ruff, Clua, and Fernandes, 2013 presented a caching-like strategy which is capable of
storing data generated in previous frames which can then be used to accelerate rendering
in later frames. Ruff et al. claim that their approach can be integrated to any existing ray
tracing solution, and will allow data to be reused between frames. A significant limitation
of this approach, however, is that it is tailored to static scenes. Ruff et al. point out
that any movement of the scene objects would generate inconsistencies in cached data,
although they do provide some potential solutions to this problem.

2.3.8 Limitations of ray tracing

Despite the numerous advantages of ray tracing, it has one major disadvantage: ray
tracing can not simulate fuzzy phenomena, such as soft shadows. Figure 2.13 demonstrates
shadows as simulated by ray tracing. Shadows produced by ray tracing are defined by
explicit boundaries, where in real life, the edges of shadows are not well defined. In order
to understand why ray tracing has this limitation, it is important to understand exactly
what it is trying to approximate.

The Rendering Equation

Kajiya, 1986 presented a single integral equation which generalises a variety of rendering
techniques. This equation has become known as "The Rendering Equation", the title
of his 1986 paper. Solving it produces an accurate simulation of many effects, including
soft shadows, depth of field, ambient occlusion, global illumination and motion blur. The
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(a) hard shadows (b) soft shadows

Figure 2.13: The hard edges of shadows generated by ray tracing, next to the soft shadows
created by path tracing

Figure 2.14: The soft edges of a real shadow
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Figure 2.15: The aliased edges caused by point sampling approaches

physical basis to this equation is as an approximation to Maxwell’s equation for electro-
magnetism. Solving this equation is the main challenge in realistic rendering (Dimov,
Penzov, & Stoilova, 2007).

Ray tracing evaluates this integral at a single point, the point of the intersection of
a ray with the scene, and as such, it is not a good approximation. For this reason,
ray tracing is known as a point-sampling approach. A number of approaches have been
developed to address this limitation, such as cone tracing, distributed ray tracing, and
path tracing.

Cone tracing

Amanatides presented a new method of ray tracing using cones rather than half-line rays
in order to sample each pixel. The spread angle of the cone is chosen such that the radius
of the cone’s base is the size of the pixel according to the projection. The difficulty in
using this method is the complexity of the intersection tests of a cone with the scene.
Amanatides describes the necessary intersection calculations between a cone and various
objects.

As cone tracing is no longer a point-sampling method, anti-aliasing is no longer re-
quired, and yet still only one sample per pixel is required. Amanatides’ approach also
allows for built in level of detail, soft shadows and blurred reflections. Given efficient
intersection tests, this allows cone tracing to achieve similar performance to ray tracing
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with numerous advantages.

Distributed ray tracing

Cook, Porter, and Carpenter, 1984 also provides a solution to these problems with tra-
ditional ray tracing. By distributing the directions of the rays according to the analytic
functions they sample, Cook et al.’s approach allows ray tracing to render fuzzy phe-
nomena. By utilising this technique, Cook et al. enable ray tracing to produce blurred
reflections, translucency and soft shadows, motion blur and depth of field.

The advantage of this approach over Amanatides’ cone tracing approach is that the ray
intersection calculations do not change, merely the ray directions are distributed (Cook et
al., 1984). Similarly to Amanatides, 1984, the approach presented in this paper also does
not require any more rays than vanilla ray tracing. The disadvantage to this approach
is that the rays are still point-sampled, and therefore, anti-aliasing techniques are still
required in order to reduce the effects of aliasing on the edges of objects.

Path tracing

Kajiya’s own approach involves a Monte Carlo solution of the rendering equation. This
Monte Carlo solution involves randomly distributing rays over the integral’s domain, and
then averaging them. This produces an extremely accurate and unbiased image, which
naturally simulates many visual effects, including soft shadows, global illumination, and
depth of field. Unfortunately, in order to get high quality images from this approach, a
large number of rays must be traced in order to avoid very visible noisy artifacts.

Despite this, Bikker and van Schijndel have managed to get a path tracer running in
real-time by utilising the persistent threads technique demonstrated by Aila and Laine,
2009. This approach still displays noisy artifacts at first however, with the approximation
improving over time as the camera is stationary and more samples are averaged. Despite
this, the noise is still being improved, and with more computing power, the ability to
average more samples per pixel faster will naturally reduce the amount of noise generated
over time.
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3.Methodology

3.1 Ray tracing

Our ray tracer uses the GPU-optimised parametric octree traversal algorithm presented
by Laine and Karras, 2010. This algorithm is extremely efficient for traversing along
rays through a sparse octree as it hierarchically avoids empty space, finding the first
intersection of the ray extremely fast.

Pseudo-code for the ray casting algorithm is given in algorithm 2. Our data is stored in
a regular octree structure, meaning that each node of the tree is divided into 8 identically
sized octants. The algorithm then begins by determining the intersection of the root node
with the ray, as well as determining the first entered child octant. This is shown in figure
3.1. The main loop then begins.

The algorithm then checks that the current voxel exists. If the current voxel exists, the
exit conditions are checked: the projection of the current voxel is smaller than the pixel on-
screen, and whether the voxel is a leaf node, in which case there are no more subdivisions
below it. If either of these conditions are met, the algorithm terminates, returning the
current voxel. Otherwise, the algorithm executes push, advancing the traversal to the
first entered child voxel.

If the current voxel does not exist, the algorithm advances the traversal to the next
voxel intersected by the ray on the current level. The direction of advancement is then

(a) Intersection of the root with the ray (b) Initial child selection

Figure 3.1: Initial intersection test
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Algorithm 2 Ray cast algorithm pseudo-code (Laine & Karras, 2010)
1: procedure Raycast(root, ray)
2: current_voxel← intersect(root, ray) . Intersection with root
3: while not terminated do . Traverse
4: if current_voxel exists then
5: if voxel smaller than pixel then . Exit conditions
6: return current_voxel
7: else if voxel is a leaf then
8: return current_voxel
9: else

10: current_voxel← push(currrent_voxel, ray) . Descend into child
11: end if
12: end if
13: current_voxel← advance(current_voxel, ray) . Advance into next sibling
14: if advance direction disagrees with ray direction then
15: current_voxel← pop(current_voxel, old_voxel) . Pop last common

parent
16: end if
17: end while
18: end procedure

(a) The current voxel prior to push (b) The current voxel after push

Figure 3.2: The push operation, 2D case
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(a) The current voxel prior to advance (b) The current voxel after advance

Figure 3.3: The advance operation, 2D case

checked against the ray direction to ensure the advance was valid. If the direction of
advance does not coincide with the direction of the ray, in which case one of the parent
nodes of the current voxel differs from one of the parent nodes of the previous voxel, pop
is used to return to the last common parent of the two voxels and determine the next
child intersection along the ray, after which time traversal continues. The push, advance,
and pop operations are described fully by Laine and Karras, 2010.

As empty space is quickly advanced over, preventing unnecessary traversal deeper into
the tree, and voxels are never revisited, this algorithm quickly determines whether a ray
intersects with a volume stored within an octree. This efficient traversal allows us to cast
rays against a volume to produce a real-time ray traced image.

3.1.1 Storage

Our data structure uses the same basic storage mechanisms as Laine and Karras, 2010.
The tree structure is stored separately from the related shading data, as the majority of
processing time is spent in traversal. The extra time it takes to look up shading attributes
for shading is therefore traded for a more compact traversal structure. A pointer to a
lookup table pointing to attributes for the whole volume is stored at 8 kilobyte boundaries
within the tree data.

The tree structure encodes each non-leaf node as a child descriptor, containing a
pointer to the children of the current node, an 8-bit mask detailing which of the current
node’s children exists, and another 8-bit mask which determines which of the node’s
children are non-leaves (in other words, which children have their own child descriptors
stored at the child pointer.)

The child descriptors for the children of a node are then stored together in a block,
referenced by this child pointer. The non-leaf mask can then be used to access a particular
child using an index from 0 to 7 using a 256 bit lookup table which relates the non-leaf
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(a) The initially intersected voxel (b) Push

(c) Advance (d) Push

(e) Advance, the first intersected voxel is found

Figure 3.4: How empty space is avoided, 2D case
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mask of a parent voxel to the index of the desired child:

child_offset = lookup(non_leaf_mask << child_index)

The lookup table contains values from 0 to 7, containing the offset of the desired child
given a particular non-leaf mask. This lookup table and the relevant implementation is
shown in appendix Appendix A.

Voxel attributes

The attributes stored for each voxel are the main way in which our storage scheme varies
from that used in Laine and Karras, 2010. In Laine and Karras, 2010, only a colour and
a normal, representing the volume after ambient occlusion is pre-calculated, are required
for shading. For our purposes, additional attributes are required per-voxel, such as index
of refraction and reflectance.

Attributes are stored after the traversal information, along with a lookup table that
points to blocks of attributes, grouped by parent voxel. The index in the lookup table
can be obtained by considering the offset of the parent’s child descriptor from the start
of the data, as so:

lookup_index =
parent_desc_addr − start_addr

child_desc_size

The child descriptor size is a constant, referring to the size in bytes of each child
descriptor.

This index is then used to retrieve the block of attributes containing the current voxel’s
attributes, and then the child_offset obtained above is used to obtain the attributes for
the current voxel:

voxel_attributes = lookup_table[lookup_index] + child_offset

The resulting pointer points to a structure containing the packed attributes required
to shade the current voxel. For our renderer, that includes colour, normal, reflectance,
and index of refraction, where the colour also contains an alpha channel which is used to
determine transparency. The number of bits used to store each attribute is detailed below:
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Attribute Size in bits Details
Colour 32 bits 8 bits for red, green, blue, and alpha components

between 0.0 and 1.0
Normal 32 bits Encoded as detailed in Laine and Karras, 2010,

providing up to 14 bits of precision for smooth
normals

Reflectance 16 bits A floating point value between 0.0 and 1.0
Index of refraction 16 bits A floating point value between 1.0 and 4.0

The 16-bit floating point values for reflectance are stored as integers between −215

and 215, as these are the minimum and maximum values that can be stored in a signed
16-bit integer. These values are scaled such that the minimum value (0.0 for reflectance
and 1.0 for refraction) is encoded as −215, and the maximum value as 215. Minimum and
maximum values were chosen to maximise the precision of the packed values, although
the values are packed as 16-bit integers purely for the reason that two 16-bit integers fit
exactly into a 32-bit bit-field. If more attributes were added as needed, the sizes of these
packed values could potentially be reduced as needed.

The minimum and maximum values for reflectance were chosen as values outside of
this range are not physically sensible, as reflectance is defined as the fraction of received
electromagnetic radiation (in this case, light) that is reflected by a surface. Values between
0 and 1 for refraction are also not physically sensible, although 4 was chosen as an arbitrary
cut-off.

Floating point values are packed into integral bitfields using the following formula,
where min and max are the minimum and maximum values to be considered, and bits is
the number of bits allocated:

range = max−min

int_max = 1 << (bits− 1)

packed_value = floor((value−min) · int_max
range

)

These values are then unpacked as needed. In some cases, this might not be necessary.
For example, when checking for changes in index of refraction, the integral value can be
used instead.

3.2 Reflection rays

In order to determine the contribution of light reflected by the scene, a reflection ray must
be cast in the angle of reflection in order to find any surfaces that may be reflecting light
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Figure 3.5: The relationship between the angle of incidence θi and the angle of reflection
θr

back. The law of reflection tells us that the angle of incidence, the angle between the
normal of a surface and the ray hitting it, is equal to the angle of reflection (Heath, 1999).
The GLSL (OpenGL Shader Language) specification gives a vector form of this equation
using the dot product (Kessenich, Baldwin, & Rost, 2014), where I is the incident vector
and N is the normal of the surface:

reflection direction = ~I − 2 ∗ ~N ∗ ( ~N · ~I)

When shading a surface, a reflection ray is cast in this direction in order to check for
intersections with the rest of the scene. If any such intersections are found, the intersected
surface is shaded recursively down to a specified limit, and then added onto the overall
reflected colour for the current surface.

3.3 Refraction rays

In order to refract a ray through a surface, the direction of the refracted ray must be
calculated. The refracted angle can be calculated by utilising Snell’s law, which states
a relationship between the angle of incidence θ1, the angle of refraction θ2, the index of
refraction of the current medium n1, and the index of refraction of the medium being
entered n2 (A. Glassner, 1989):
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Figure 3.6: The relationship between the angle of incidence θi and the angle of refraction
θr

sin θ1
sin θ2

=
n2

n1

By using this relationship, it is possible to determine a direction vector for the refracted
ray. The GLSL specification again gives a method of calculating a direction vector for a
refracted ray, given an incidence vector I, a surface normal N , and the ratio of the current
index of refraction to the new index of refraction eta:
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Listing 3.1: Calculation of a refraction ray

vec to r r e f r a c t ( vec to r I , vec to r N, f loat eta )
{

k = 1 .0 − eta ∗ eta ∗ ( 1 . 0 − dot (N, I ) ∗ dot (N, I ) ) ;

i f ( k < 0 . 0 )
return vec to r ( 0 . 0 , 0 . 0 , 0 . 0 ) ;

else
return eta ∗ I − ( eta ∗ dot (N, I ) + sq r t ( k ) ) ∗ N;

}

A refracted ray can then be cast through a material in order to determine the path
of light through a medium. When the ray reaches a boundary beyond which the index of
refraction changes, the direction of the refraction ray must be recalculated.

One additional consideration must be made, however. The specified normal must be
a normal on the plane through which the ray is refracting. In the case of a refraction ray
leaving a material, rather than entering it, the normal usually used for rendering a surface
will need to be reversed in order to obtain this normal. This can easily be handled by
checking the dot product of the normal with the direction of the refracted ray:

dot = ray.direction · normal

If this dot product is greater than zero, then the surface normal is facing outwards
from the direction of the ray, and as such, must be reversed to obtain the normal of the
surface through which the ray is being refracted:

normal = −normal

3.3.1 Tracing rays through materials

In order to handle translucent materials, we must be able to trace a ray through a translu-
cent material. The problem is, given an intersection with a surface, finding the point at
which a refraction ray cast from this intersection point exits the surface. One possible
solution is to modify the ray casting algorithm, redefining the exit conditions such that
it only exits when empty space is found, as in algorithm 3.

The algorithm will now descend until it finds a leaf node, advancing and popping only
once a leaf is found. This algorithm will find the exit point of a ray, but it has the side
effect of checking every voxel along the ray’s path, at every level. This is very inefficient,
and does not take advantage of the volume’s tree structure.

On the other hand, if we were to consider the refraction ray discretely, we could
follow the path of the ray through the solid, casting back towards the original point of
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Algorithm 3 Ray casting through solids
1: procedure Raycast_solid(root, ray)
2: current_voxel← intersect(root, ray) . Intersection with root
3: while not terminated do . Traverse
4: if current_voxel exists then
5: current_voxel← old_voxel
6: current_voxel← push(currrent_voxel, ray) . Descend into child
7: end if
8: old_voxel← current_voxel
9: current_voxel← advance(current_voxel, ray) . Advance into next sibling
10: if advance direction disagrees with ray direction then
11: current_voxel← pop(current_voxel, old_voxel) . Pop last common

parent
12: end if
13: if current_voxel nonexistent then . Return when empty space is found
14: return old_voxel
15: end if
16: end while
17: end procedure

intersection at intervals. Once the active span of the ray as returned by the ray casting
algorithm is non-zero, in other words, when the ray has started in empty space and found
a surface, we have found the probable exit point of the refraction ray. In order to do
this, an interval must be chosen. We chose to use a fixed user-configurable interval, but
it may be possible to use a dynamic interval based on the volume being ray traced. The
pseudo-code for this operation is given below.

Algorithm 4 Discrete ray cast
1: procedure Discrete_raycast(root, ray)
2: max_iterations = scene_width

fixed_interval

3: for i = 0; i < max_iterations; + + i do
4: Raycast(origin + i * direction, -direction)
5: if resulting span > 0 then . We found empty space
6: break
7: end if
8: end for
9: return found surface
10: end procedure

3.3.2 Refraction through heterogeneous materials

It has already been established that the refraction ray’s direction must be recalculated
when moving from a material with one index of refraction to a material with a different
index of refraction. The problem, then, is how to accomplish this for heterogeneous
materials.
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The above discrete ray cast algorithm can be easily modified to take account of the
change in refractive index as it traverses through a material.

Algorithm 5 Discrete ray cast with varying refractive index
1: procedure Discrete_raycast(root, ray)
2: max_iterations = scene_width

fixed_interval

3: refractive_index = hit_refractive_index
4: for i = 0; i < max_iterations; + + i do
5: Raycast(origin + i * direction, -direction)
6: if resulting span > 0 then . We found empty space
7: break
8: end if
9: if hit_refractive_index! = refractive_index then
10: if ~normal · ~direction > 0 then . Check if exiting material
11: normal = −normal
12: end if
13: direction = Refract(direction, normal, refractive_index

hit_refractive_index
)

14: end if
15: end for
16: return found surface
17: end procedure

3.4 Shading

Our shader uses a Blinn-Phong shading model, as described in chapter 2.
When shading a surface, a ray is cast towards each light source to check if it is occluded,

in which case the intersection is in shadow. Reflection and refraction rays are also cast
and the results are then mixed additively with the final output colour.

We use recursion to handle multiple levels of reflection and refraction to a predefined
maximum. Simplified pseudo-code for rendering and shading is given in algorithm 6.

3.5 Parallelisation

Ray tracing is parallelised with one thread per pixel on the screen. This thread is then
responsible for the primary ray and all secondary rays, and all work involved in generating
that pixel, as shown in algorithm 6. Pixels are considered independently to allow this
process to be parallelised. These threads are spawned on the GPU in 32x32 grids to
maximise occupancy. This is the maximum grid size on current generation CUDA GPUs,
and allows us to achieve high levels of GPU utilisation as shown in figure 3.8.

This approach allows us to achieve real-time rendering for simple scenes, and given the
results of Laine and Karras, 2010 should also allow more complex scenes to be rendered.
However, the limitation of this approach is that, as more work is added to each thread,
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Figure 3.7: Secondary rays being spawned for calculating shadow coverage, reflection, and
refraction

Figure 3.8: GPU utilisation for our rendering kernel, as determined using Nvidia’s nsight
profiler
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Algorithm 6 Per-pixel rendering
1: procedure render_pixel(x, y, tree, projection)
2: out_colour ← (0, 0, 0, 0)
3: ray ← calculate_ray(x, y, projection)
4: intersection← raycast(tree, ray)
5: if intersection.hit then
6: out_colour ← shade(tree, ray, intersection)
7: end if
8: returnoutcolour
9: end procedure
10:
11: procedure shade(tree, ray, intersection)
12: out_colour ← (0, 0, 0, 0)
13: for each light do . Shade for each light
14: light_dir ← light_pos− intersection.position . Check shadow
15: shadow_ray ← (intersection.position, lightdir)
16: shadow_intersection← raycast(tree, shadow_ray)
17: if shadow_intersection.hit then
18: continue
19: end if
20: out_colour + = diffuse_reflection(intersection, light)
21: out_colour + = specular_reflection(intersection, light)
22: end for
23:
24: reflection_ray ← reflect(ray, intersection) . Reflection
25: reflection_intersection← raycast(tree, reflection_ray)
26: if reflection_intersection.hit then
27: out_colour + = shade(tree, reflection_ray, reflection_intersection)
28: end if
29:
30: refraction_ray ← refract(ray, intersection) . Refraction
31: refraction_intersection← raycast_empty(tree, refraction_ray)
32: if refraction_intersection.hit then
33: out_colour + = shade(tree, refraction_ray, refraction_intersection)
34: end if
35: end procedure
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every thread in a grid must follow the most computationally heavy computation path due
to the highly parallelised nature of GPUs. Possible solutions to this problem are presented
in chapter 5.

3.6 Test data

Benchmarks for the software were taken by recording the average number of frames per
second (FPS) over one minute for a given screen resolution, as well as data resolution.
Screen resolution is measured in pixels, while data resolution is measured in nodes of the
tree at the lowest level of the tree. This resolution is given by the formula:

resolution = 2max_scale − 1

Such that data generated down to the 11th level has a resolution of 210 = 1024 in each
dimension. This is also referred to as a resolution of 10243.

Each scene has been tested across various screen resolutions as well as data resolutions
in order to demonstrate how the algorithms scale with respect to screen ruesolution and
data resolution.

In order to evaluate our renderer’s performance we have considered the differences
in performance for a sample scene with no shadows, reflection or translucency, as screen
resolution and data resolution are varied. We consider this data our control sample, and
following samples for rendering with shadows, reflection, and translucency is compared
with this control.

We have then evaluated the relationships between screen resolution, data resolution,
and performance for these samples, as well as compared the overall performance for these
samples against our control to determine the effect on performance of considering these
effects.

These tests were conducted on a single Nvidia GTX 670.

3.7 Implementation

Our implementation utilises CUDA for all rendering, bypassing the rasterisation process
almost entirely. An OpenGL texture is created at program launch, and this texture is
then written to by the rendering kernel using OpenGL-CUDA interoperation.

3.7.1 OpenGL-CUDA interop

OpenGL-CUDA interop is accomplished using a pixel buffer object (PBO) that is shared
between CUDA and OpenGL. A PBO is stored in GPU memory, eliminating unnecessary
copying to main CPU memory. When required by CUDA, the PBO is mapped to a device
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pointer accessible by cuda, and must be unmapped before it can be accessed again by
OpenGL. The PBO can then be unpacked into an OpenGL texture directly, allowing the
CUDA-generated buffer to be written to the screen.

A code listing demonstrating how a PBO and a texture are created, and how this
PBO is registered with CUDA is available below in code listing 3.2. A code listing for
The gpuErrChk macro’s code listing is available in appendix Appendix B. Once the PBO
is created, it can be mapped to a device pointer as shown in code listing 3.3. Once
unmapped, its contents can then be unpacked to a texture for display on the screen
as demonstrated in 3.4. As all of these operations occur directly within GPU memory,
unnecessary coping to main memory is avoided.

3.7.2 Matrix maths

Matrix maths is accomplished using GLM, the OpenGL Mathematics library. This is a
C++ library which implements all of the features of GLSL and includes CUDA support,
making it suitable for writing 3D rendering code and shaders in CUDA.
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Listing 3.2: Creation of the OpenGL PBO and texturre

void∗ glFb ;

GLuint pbo ;
GLuint t ex id ;

// Create p i x e l b u f f e r o b j e c t
g lGenBuf fers (1 , &fbo ) ;

// Create b u f f e r t e x t u r e
glGenTextures (1 , &tex id ) ;

// I n i t i l a i s e p i x e l b u f f e r o b j e c t wi th s i z e
g lBindBuf f e r (GL_PIXEL_UNPACK_BUFFER, pbo ) ;
g lBuf fe rData (GL_PIXEL_UNPACK_BUFFER,

viewport .w ∗ viewport . h ∗ 4 ∗ s izeof (GLubyte ) ,
nu l lp t r , GL_DYNAMIC_DRAW) ;

g lB indBuf f e r (GL_PIXEL_UNPACK_BUFFER, 0 ) ;

// I n i t i a l i s e t e x t u r e wi th width , he i gh t , and format
glBindTexture (GL_TEXTURE_2D, t ex id ) ;
glTexImage2D (GL_TEXTURE_2D, 0 , GL_RGBA, width , height , 0 ,

GL_RGBA, GL_UNSIGNED_BYTE, NULL) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) ;
glBindTexture (GL_TEXTURE_2D, 0 ) ;

// Reg i s t e r p i x e l b u f f e r o b j e c t wi th cuda
gpuErrchk ( cudaGraphicsGLRegisterBuffer (&glFb , pbo ,

cudaGraphicsRegisterFlagsNone ) ) ;
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Listing 3.3: Binding the PBO so that CUDA kernels can access it

// Bind cuda graph i c s re source s
gpuErrchk ( cudaGraphicsMapResources (1 , &glFb , 0 ) ) ;

// Get a dev i c e po in t e r to i t
gpuErrchk ( cudaGraphicsResourceGetMappedPointer(&ptr , &s i z e ,

glFb ) ) ;

// Pass dev i c e po in t e r to CUDA kerne l

// Unmap pbo
gpuErrchk ( cudaGraphicsUnmapResources (1 , &glFb , 0 ) ) ;

Listing 3.4: Unpacking of a PBO to an OpenGL texture

g lB indBuf f e r (GL_PIXEL_UNPACK_BUFFER, pbo ) ;
glBindTexture (GL_TEXTURE_2D, t ex id ) ;
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE) ;
glTexImage2D (GL_TEXTURE_2D, 0 , GL_RGBA, width , height , 0 ,

GL_RGBA, GL_UNSIGNED_BYTE, 0 ) ;
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4.Results and Analysis

In line with our objective of creating a real-time GPU ray tracer that is capable of ray
tracing heterogeneous translucent materials, there are three main factors to consider when
evaluating our work. The first factor is performance. In order to run at real-time frame
rates, a minimum performance threshold must be met. The next factor is the size of our
data set. The data must be compact enough to fit in GPU memory and still be high
resolution enough such that a high quality image can be generated. Additionally, the
final image quality must be considered, to determine if the renderer can correctly handle
the desired visual effects, and identify any problems with our approach.

4.1 Performance

In evaluating the performance of our renderer there are three main criteria to consider:
that it can produce reasonable quality images in real-time at high screen resolutions; that
it scales well with the resolution of the data, such that the overall quality of the image
produced is comparable to that of rasterisation-based renderers; and that it scales well
with the resolution of the screen, such that it can be used at the higher screen resolutions
desired for games.

Figure 4.1 shows the resulting image from our sample scene at 5123 resolution with
each effect enabled.
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(a) No effects (b) Shadows

(c) Reflection (d) Translucency

Figure 4.1: Our test scene at a 5123 resolution with various options turned on
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4.1.1 Table of results

Scene Screen Res Data Res Avg FPS
1 Teapot 768x768 5122 99.34

on checker board plane 10242 85.17
20482 71.55

1024x1024 5122 63.05
10242 54.45
20482 46.09

1920x1080 5122 31.18
10242 26.38
20482 22.68

2 Teapot with shadow 768x768 5122 77.46
on checker board plane 10242 65.32

20482 55.22
1024x1024 5122 49.54

10242 42.04
20482 36.10

1920x1080 5122 23.24
10242 19.40
20482 16.89

3 Reflective teapot 768x768 5122 69.83
on checker board plane 10242 58.64

20482 49.13
1024x1024 5122 46.68

10242 37.99
20482 31.93

1920x1080 5122 20.44
10242 16.88
20482 14.18

4 Translucent teapot 768x768 5122 39.48
on checker board plane 10242 32.32

20482 25.25
1024x1024 5122 24.38

10242 20.11
20482 15.96

1920x1080 5122 10.07
10242 8.30
20482 6.14
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4.1.2 Real-time rendering

For the purposes of our evaluation, we are defining real-time as above 30 frames per
second. This is not only the minimum frame rate at which a game is expected to run, but
is also above the minimum of approximately 20 required for smooth motion. Ideally, 60
frames per second is desired, as this is the refresh rate of most desktop monitors, as well
as a common frame rate at which games are expected to run.

To determine if these thresholds are being met, we measure frame rate over one minute
and average it.

4.1.3 Scaling with screen resolution

Our renderer is expected to perform at the high resolutions demanded by games. As our
render is parallelised per pixel, in order to test how well this parallelisation functions,
we have taken measurements for three screen resolutions: 768x768 (approximately 550k
pixels,) 1024x1024 (approximately 1000k pixels,) and 1920x1080 (approximately 2000k
pixels.) 1920x1080 was chosen as our benchmark resolution as it is at the upper bounds
of standard display resolutions for video games, and as such, our renderer should be able
to handle it. The lower resolutions were chosen due to an approximate doubling of pixels
between each one, and as such it should allow us to determine whether our performance
scales well with screen resolution.

4.1.4 Scaling with data resolution

A 3D renderer must be able to handle data of a resolution high enough to display the
data smoothly. For this reason, we have chosen to measure the performance at varying
data resolutions in order to determine how our methods scale with the resolution of the
data.

A 10243 resolution (1024 subdivisions in each axis) was chosen as this is the resolution
needed to show our data up close with similar quality to a rasterisation-based renderer.
Samples were also taken at 20483 and 5123 resolutions in order to determine how the
performance is affected by varying data resolutions.
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Rendering with no effects (control)
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Figure 4.2: A plot of frame rate against screen resolution for our control

This data functions as our control sample, and allows us to analyse the effect on per-
formance that different visual effects have. By examining the differences in performance
with this mode of rendering, and considering the averages and ranges of these differences
in performance, we can determine exactly what is affecting performance.

As shown by the graph above, our renderer exhibits a decrease in performance as
the number of pixels on the screen is increased. The number of pixels increases by 78%
from 768x768 to 1024x1024, with performance decreasing by 36.0% on average with a
range of 0.94%. For a linear decrease, one would expect the performance to increase by
100(1 − 1

1.78
) = 44%, meaning that our parallelisation results in a slightly better than

linear decrease in performance when the number of pixels on the screen are increased.
On the other hand, the number of pixels from 1024x1024 to 1920x1080 increases by

98%, with performance decreasing by an average of 51.0%, with a range of just 0.25%. In
other words, with the number of pixels on the screen doubled, the performance halves,
meaning that, at high screen resolutions such as these, the performance increases linearly.

This is disappointing, and highlights a weakness in our parallelisation scheme. At
higher resolutions, our renderer drops down to and below the lower end of our desired
threshold for real-time rendering. With better parallelisation, one would expect a less
than linear decrease in performance, with a perfectly parallelised process operating in
constant time when the number of pixels is varied.

On the other hand, rendering appears to scale well with data resolution. As the
resolution of the data is increased by 8 times at each step, the performance decreases by
an average of 14.7% between steps, with an average range of only 1.6%. As such, the
data structure performs very well, and should allow the rendering of a range of scenes of
varying resolutions.

55



Rendering with shadows
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Figure 4.3: A plot of frame rate against screen resolution for rendering with shadows

As shown by the graph above, the same relationships are seen when shadows are enabled,
with a minor decrease in performance. Shadow rays decrease performance by an average of
23.5%, with a range of just 5.0% between varying screen resolutions and data resolutions.

The range in performance decrease as screen resolution is varied ranges from 1.0% to
1.3%, while the same range for varying data resolutions is 3.6% to 4.0%, implying that
data resolution is the major contributor to shadow performance. This makes sense, as
the only difference between our control and shadow rendering (with reflection turned off,
at least) is that a single extra ray per pixel is cast through the data. Despite this, the
difference is very low, allowing the same relationships as in the control samples to show
through.

Despite this decrease in performance, the performance still scales as well as the per-
formance in our control samples, meaning that the major factors in scaling should still be
the same factors as those for our control.
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Rendering with reflection
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Figure 4.4: A plot of frame rate against screen resolution for rendering with reflection

Similarly to rendering with shadows, this data exhibits the same relationships as our
control. This time, the average decrease in performance is 32.0%, with a much greater
overall range of 11.5%. The performance decrease ranges from 1.6% to 4.8% as the
screen resolution is increased, while ranging from 5.8% to 8.5% as data resolution is
varied, indicating that, again, data resolution is the major factor affecting differences in
performance of reflection.

Despite this, these ranges are still minor compared to the average difference, allowing
the data to still show similar relationships to those shown by the control data.

Additionally, the performance does not seem to decrease significantly as data resolution
is increased.
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Rendering with translucency
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Figure 4.5: A plot of frame rate against screen resolution for rendering with translucency

This data also exhibits the same relationships as our control, but the reduction in perfor-
mance is far greater when compared to shadows and reflection. The average reduction in
performance for rendering our translucent object was 65.1%, with an overall range close
to that of reflection at 12.7%. The range for varying screen resolution was 4.0% - 5.2%,
while the range for varying data resolution was 5.5% - 8.2%. These are, again, not a
major problem, as the data still exhibits similar relationships to the control data.

Despite this, the data for translucency shows a good relationship between performance
and data resolution, with rendering scaling well as data resolution is increased. This
makes sense, as our method of determining translucency is discrete, meaning it considers
the volume at discrete, fixed intervals rather than the resolution of the data.

The overall decrease in performance, however, is an issue, with performance at 1920x1080
dropping into single digits. Even at lower resolutions, the performance dips below real-
time frame rates.

We believe the decrease in performance comes from adding more work to the thread
that renders each pixel. As more work is added to the thread, every thread must follow the
most computationally expensive execution path due to the SIMD nature of the GPU. In
order to address this, we believe that investigation into alternate parallelisation schemes
is required.

The persistent threads technique demonstrated in Aila and Laine, 2009 seems like it
could improve the parallelisation of our renderer. Firstly, the number of threads spawned
on a GPU is related to achieving maximum occupancy on that GPU rather than the
number of pixels on the screen, which we have shown to drop off in performance gains at
higher resolutions.
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Additionally, as the processes for the initial intersection with the volume, shadows,
reflection and refraction all require casting rays within the volume, we believe that it may
be possible to create persistent threads that can handle any of these operations, rather
than having one thread that handles all of them.

4.2 Memory usage

Memory usage is an important factor to consider in real-time rendering. Ideally, all
required data should be compact enough to be stored in memory. Even if this is not the
case, it is desired for the memory usage to be as low as possible to reduce the amount of
memory that must be considered for streaming. In order to evaluate memory usage, we
have looked at the memory usage of our test scenes from section 4.1. Our data structure
encodes volume data as well as shading data, which must be taken into account when
analysing this data.

Figure 4.6 shows the memory usage of our test scene at each resolution.
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(a) 5123 resolution, memory usage 34,354kB (b) 10243 resolution, memory usage 137,141kB

(c) 20483 resolution, memory usage 543,832kB

Figure 4.6: Our test scene at various resolutions and the resulting memory usage

As can be seen, the memory usage increases significantly for every power-of-two in-
crease in resolution. In practice, a 10243 resolution is often sufficient for smooth render-
ing, however up close, greater resolutions may be required. Despite the structure being
compact enough to fit into GPU memory for our example scene, the memory usage is
significantly greater than polygon-based meshes. Despite this structure including both
volume and shading data, it still has unsatisfactorily high memory usage.

Two major approaches have been been suggested by other works to reduce the memory
usage of the sparse voxel octree: contours (Laine & Karras, 2010), which utilise non-
cubical voxels to increase the approximation of the original data, removing the need
for deeper encoding once the approximation becomes sufficient; and sparse voxel DAGs
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(a)

Figure 4.7: A 2D cross section of the sphere used in this experiment. In one data set, the
centre is hollow. In the other, it has a refractive index of 1.0

(Kampe et al., 2013), which allow identical regions to share pointers, and can reduce the
memory usage of such structures by one to three orders of magnitude. Despite the high
memory usage of our structure, these techniques should also be applicable to our work.

4.3 Image quality

4.3.1 Accuracy of heterogeneous refraction

In order to test the accuracy of our method of calculating heterogeneous refraction, we
utilise two sets of data: a sphere with refractive index 1.5, with a hollow half-radius sphere
embedded in it (see figure 4.7); and a sphere with refractive index 1.5, with a half-radius
sphere embedded inside it of refractive index 1.0. In theory, as the refractive index of air
is considered to be 1.0, the resulting images should be identical.

As can be seen in figure 4.8, our heterogeneous refraction works as intended. It is
important to note, however, that this does not prove that the result is physically accurate.
Further work is required, comparing the output of our renderer to real objects that exhibit
varying indices of refraction, in order to determine its physical correctness.

4.3.2 Issues due to the cubical nature of voxel data

As can be seen in figure 4.9, the cubical nature of voxels poses a great issue when con-
sidering secondary rays. As a sphere is a convex shape, it should, in theory, be unable to
cast any shadows on its own surface. Despite this, the voxel approximation of a sphere
casts shadows on itself, causing unsightly black artifacts. This problem generalises to any
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(a) Hollow centre (b) Refractive index 1 centre

Figure 4.8: The resulting images are identical

(a) A voxel approximation of a
sphere

(b) The phenomenon up close

Figure 4.9: A voxel approximation of a sphere casting shadows on itself
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(a)

Figure 4.10: The path of a shadow ray from the surface. The ray does not make it to the
light, as it intersects with other voxels first

curved surface, as well as other types of secondary rays, such as reflection and refraction
rays. Figure 4.10 demonstrates why this occurs, by considering the path of a shadow ray
from part of the surface that is in shadow.

One possible solution to this problem is to increase the data resolution. As data
resolution increases, the problem lessens. The problem with this solution is that it’s hard
to predict, in a general way, what resolution the data will need to be stored at in order
to prevent these types of artifacts in any given situation. Even lessening the effect in this
way is extremely memory inefficient.

There are two main alternatives to this solution. Since the problem only occurs for
surface voxels, one possible solution is to make the ray casting algorithm aware of surface
normals in order to perform a sort of back-face culling. The results of this are shown in
figure 4.12. The major disadvantage of doing this is that it adds a number of expensive
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(a)

Figure 4.11: The problem also occurs with reflection

calculations to the inner loop of the ray cast, greatly reducing the overall performance of
the renderer. On top of this, it would be more desirable to extend such a solution to one
that does not involve considering surfaces, in order to stay in line with our volumetric
rendering goals.

A more generic version of this solution would use non-cubical voxels in order to improve
the approximation a voxel can make of a surface. Laine and Karras’s contours technique,
which can efficiently consider non-cubic voxels using a pair of parallel planes to bound a
volume inside the voxel, does this. We believe that this technique would also solve our
problems in this area, as well as greatly lessening the memory usage of our structure as
discussed in section 4.2.
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(a)

Figure 4.12: Making the ray casting algorithm aware of the normals of surfaces can solve
the problem, but has disadvantages
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5.Conclusions and Future Work

In this work we have produced a volume renderer which, in line with our objectives, is ca-
pable of rendering heterogeneous structures in real-time by utilising the highly parallelised
architecture of the GPU.

Our renderer is capable of obtaining comparable quality to rasterisation-based ren-
dering while also producing volumetric effects such as refraction through a heterogeneous
volume. The data structure we have chosen is capable of encoding highly heterogeneous
as well as homogeneous volumes, allowing for a dynamic sampling of the original volume
which enables the renderer to perform at varying data resolutions.

We believe that this is a promising approach which is capable of producing real-time
volumetric effects for consumer applications such as video games at real-time frame rates,
without having to rely on non real-time techniques such as the impostors technique used in
Harris, 2002 which allow data to be reused between frames. Because of this, our renderer
is capable of producing highly dynamic effects that don’t rely on coherent results.

Despite our success in achieving our objectives, there are some limitations to our work.

5.1 Memory usage

The memory usage of our data structure is sufficient for simple scenes, but as we store sub-
surface volumes, unlike approaches such as that used in Laine and Karras, 2010 which only
encode the surfaces as volumes, our memory usage very quickly becomes unsatisfactorily
high as the resolution of the data is increased. Despite this, the encoding of sub-surfaces is
necessary in order to consider volumetric effects, otherwise the advantages over polygon-
based approaches are diminished.

This excessive memory usage may become an issue for complex scenes, where a higher
resolution is required in order to encode larger structures down to similar precisions.
Promising approaches for reducing the memory usage of the sparse voxel octree have
been researched. One such approach is the contours utilised in Laine and Karras, 2010,
while another is the sparse voxel DAG presented in Kampe et al., 2013.
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5.2 The disadvantages of cubical voxels

Another key limitation of our work is that, due to the cubical nature of voxels, secondary
rays cast from smooth surfaces may be able to intersect with themselves where they
otherwise would not be able to. This produces many undesired visual effects, including
the voxels of a sphere casting shadows on the sphere’s surface.

We believe that this is a limitation that can be overcome by considering surface voxels
to not be cubical. The contours approach by Laine and Karras, 2010 would also solve
this problem, as it is an efficient method of accomplishing non-cubical voxels while adding
little work to the inner loop of each ray cast.

5.3 The scaling of performance as screen resolution is

increased

At resolutions higher than 1024x1024, our performance begins to scale linearly with screen
resolution. Although this may be acceptable with higher performance, it highlights
a weakness of our parallelisation scheme. It would seem that alternate paralellisation
schemes, such as the persistent threads approach from Aila and Laine, 2009 may benefit
our work immensely.

5.4 Future work

Our work demonstrates that real-time volumetric effects within the GPU are possible, but
falls short of producing real-time frame rates at full-screen resolutions. For this reason,
future work would be best targeted at improving the parallelisation of our approach such
that it scales better at these resolutions.

Additionally, as we only consider volumetric refraction, adapting our work to consider
more complex volumetric effects such as the sub-surface scattering effects encountered
when considering the lighting of clouds would allow a far wider range of real-life objects
to be rendered volumetrically.

Once these limitations have been overcome, our work points to the possibility of such
effects appearing in consumer software, such as games, in the near future.
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Appendix A Lookup table used for accessing child vox-
els using a parent’s child descriptor

Listing 1: The lookup table and function used for accessing child voxels using a parent’s
child descriptor
// A t a b l e f o r g e t t i n g the c h i l d index f o r the c h i l d ch i ld_index
// the index in t h i s array = ( parent ’ s_childmask << ch i l d index )
__constant__ int32_t chi ld_index_table [ ] =
{

0 , 1 , 1 , 2 , 1 , 2 , 2 , 3 , 1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 ,
1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 ,
1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 ,
1 , 2 , 2 , 3 , 2 , 3 , 3 , 4 , 2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 ,
2 , 3 , 3 , 4 , 3 , 4 , 4 , 5 , 3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 ,
3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 ,
3 , 4 , 4 , 5 , 4 , 5 , 5 , 6 , 4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 ,
4 , 5 , 5 , 6 , 5 , 6 , 6 , 7 , 5 , 6 , 6 , 7 , 6 , 7 , 7 , 8 ,

} ;

__device__ int32_t get_child_index ( uint32_t mask ,
uint32_t chi ld_idx )

{
return chi ld_index_table [ ( mask << chi ld_idx ) & 0xFFu ] ;

}
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Appendix B CUDA Utils

Listing 2: Macro that checks CUDA calls for errors (gpuErrChk)
#define gpuErrchk ( ans ) { gpuAssert ( ( ans ) , __FILE__, __LINE__) ; }
void gpuAssert ( cudaError_t code , char ∗ f i l e ,

int32_t l i n e , bool abort )
{

i f ( code != cudaSuccess )
{

f p r i n t f ( s tde r r , "GPUassert : ␣%s ␣%s␣%d\n" ,
cudaGetErrorStr ing ( code ) , f i l e , l i n e ) ;

system ( "pause" ) ;

i f ( abort )
e x i t ( code ) ;

}
}
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